

ptic System Application

PARCEL
APP SEPTIC
YEAR
SCANNED
LAKE

915 Lake Ave, Detroit Lakes, MN 56501
Phone (218)-846-7314; Fax (218)-846-7266

1. PROPERTY DATA (as it appears on the tax statement, purchase agreement or deed) Parcel Number(s) of property where the system will be installed:
Is this a split of an existing property? Yes (No) (If yes and a parcel number has not yet been assigned, indicate the main parcel number from which the new parcel was split.)
Section 13 Township 139 Range 40 Township Name ERIE
Lake Name 10n - Shor Innol Lake Classification
Legal Description: Pt Sw/4 8E/4 Beg S Qh Cor Sec 13 E 570' N 260' w 260' w 250' w 250'
Project Address: 3 4450 190 ht s.t
2. PROPERTY OWNER INFORMATION (as it appears on the tax statement, purchase agreement or deed) Owner's First Name 6 And & Break Owner's Last Name 6 And Am
Mailing Address 34450 190 th st City, State, Zip Detroit Linkey, mn 52501
Phone Number
3. DESIGNER/INSTALLER INFORMATION
Designer Name <u>Randy Anderson</u> Company Name <u>Anderson</u> On-sik License # 63 Y
Address P.O 1421 Detroit Lakes Phone Number 218 849 3072
Installer Name Tason Niemi Company Name Magnum Construction License # 3225
Address 43493 15014 St Frazec, mN 56544 Phone Number (218) 234-8076 RECEIVED
4. SYSTEM DESIGN INFORMATION AUG 22 2014
System Status What will new system serve? Check one
Vacant Lot-No existing system-new structure Replacement – structure removed and being rebuilt Failing –Replacement- cesspool/seepage pit or other Enlargement of system-Undersized Repairs Needed to existing Additional system on property Dwelling Resort/Commercial Commercial (Non-resort) Other – explain below
Design Flow 450 Gallons Per Day Number of Bedrooms 2 Sizing For 3 Depth of other wells within Garbage Disposal Yes No Dishwasher Yes No Lift station in House Yes No Grinder pump in House Yes No
Size of All Tanks to be installed gal Single Compartment Septic Tank gal Compartmented Tank Pit Privy gal Separate Lift Station Existing tank w/new Additional Tank Existing tank w/new Lift Station Existing Tank to be used Holding Tank with Privy
Total Number of tanks to be installed in this system (This # will be reported to MPCA at end of year.)

PARCEL SEPTIC

.

.

•							PARCEL		.
)				•		-	APP	SEPTIC	-
Type of Drain	field Fu	ıll Size of Drain	field Reduced/V	Warrantie	d size	Ĺ	YEAR]
	er Trench	sq ft		sq ft		chamber			
Rock T	******	sq ft		sq ft					
Gravell		sq ft		sq ft	,				
> Mound		760 sq ft	***	X		•			
Pressur		sq ft	***		Alarm?	Yes	No	<u> </u>	
Seepag		sq ft	***						
At-grad		sq ft	***		Size of I	ift Pump <u>299</u>	gim @ 24	hens	
Alterna		sq ft		Vorksheet	s Size of L	Lift Line	2 m 0 24		
Perform	nance	· ·							
			PROPOSED SE						
				DRAINFI					
Distance to W			100+	100 F	-				
Distance to Br			<u> </u>	45	 .				
Distance to Pr			<u>/00</u> _	100					
Distance to O				1001				•	
Distance to Pr		J 777-4	75	100+					
Distance to W	etland/Protecte	a water		140					
Daro Data	23	Soil Sizing I	Factor 1.6	7	*1f cce ~	ther than 02 a	ttach Perc Test I) Nata	
Perc Rate	<u>~~</u>	son sixing i	cacioi / · · ·	<u> </u>	.11 991 0	unci man .03, a	maon reio 1681 l	Jula	
Soil Boringe	(three are requi	ired)							
Depth	Texture	Color	Structure		Depth	Texture	Color	Structure	
•	loam	10/12/2			O - 10	10Am	1042/2	ons	
0-12	NO								ı
12.24	wam	1048914	Blocky		10.22	loam	10484/18		İ
24	10AM	2.5444	no Hed		97 x	loan	mo HHeel	Platy	J.
								·	
	<u>L</u>	<u> </u>		10000	•	1		L	i e
Depth	Texture	Color	Structure		Depth	Texture	Color	Structure	
Depui	Texture	 		- 44	Берш	Toxidio		Buractare	
0-8	loam	10yR2/2	pris						
8-23	10 Am	Blocket	104R 4/4					*	
````\ \-	an it	1.0					·		
25 +	Moore	70			l)				
<del></del>		<u> </u>	<u></u>						J
5. REQUI	RED DOCUM	ENTS	•						
** **			, ,	1		. 1	V T V	utawa Anatha	ı
U of Mr	worksheets a	re required for	mounds, pressure b	oeas, seep	age beds, at-gra	ades or Type I	v or type v sy	stems. Are me	
required	worksheets atta	acned?	YesNo						ı
6. DESIGN	ER'S CERTIF	TED STATEM	ENT						
~	4								
I, KAN	OY /the	lesson	certify that I ha	ve compl	eted the precedi	ng design work	c in accordance v	vith all	
(Print Na	me of Designer				•	- <del>-</del>			
			limited to Minneso	ota Chapte	er 7080 and the	Becker Count	y Individual Sev	wage Treatment	
System Ordin		<u>-</u> -		•					
	1 _						n/-	1.1	
1/v	lu	<u></u>					7/21/	17	
Signature of	Designer		<del></del>			Date	e		
0 /									

•





## OSTP Design Summary Worksheet University of Minnesota



Pr	roperty Owner/Client: Grant Graham	Project ID:		v 12.08.06				
	Site Address: 34450 190th St. Detroit Lakes, MN 56501	Date:	7/21/14	]				
1.	DESIGN FLOW AND TANKS							
	Design Flow: 450 Gallons Per Day (GPD) Note: The estimated design flow including a safety factor. For long to daily flow is recommended to	erm performance	, the average					
	Minimum Code Required Septic Tank Capacity: 1000 Gallons, in 1	Tanks or Compar	tments					
	Recommended Septic Tank Capacity: 1000 Gallons, in 1	Tanks or Compar	tments					
	Effluent Screen & Alarm? optional	J. 4 0. 00pa.	•••••					
c.	Holding Tanks Only:							
	Number of Holding Tanks: Total Volume of Holding Tanks:		Gallons					
	Type of High Level Alarm:							
D,	Pump Tank 1 Capacity: 500 Gallons Pump Tank 2 Capacity:		Gallons					
2.	SYSTEM TYPE							
ſ	Type of Soil Treatment and Dispersal Area*							
	○ Trench ○ Bed ● Mound ○ At-Grade ○ Gravity Distribution ● Pressure Dist	ribution-Level (	O Pressure Distrib	ution-Unlevel				
L	O Drip O Holding Tanl O Other	Elev = 100	) ft					
Г	System Type Benchmark Lo	<u> </u>						
ŀ	Type of Distri	L						
	☑ Type I ☐ Type III ☐ Type IV ☐ Type V	rock						
3,	SITE EVALUATION:							
Α.	Depth to Limiting Layer: 23 in 1.9 ft Elevation & Local	tion of Limiting La	ıyer:	ft				
В.	Minimum required separation: 36 in 3.0 ft Location:							
В.	Measured Percent Land Slope : 4.0 % 0.0 Code Maximum	Depth of System:	-13	in*				
c.	Soil Texture: loam Perc Rate: 23	MPI *if value is n	egative a mound i	s required				
D.	Soil Hydraulic Loading Rate: 0.60 GPD/ft² E. Contour Loading Rate	12.0	Gal/ft					
4.	DESIGN SUMMARY							
	Trench Design Summary							
	Dispersal Area ft ² Sidewall Depth in	Trencl	n Width	in				
	Total Lineal Feet ft Number of Trenches Code	e Maximum Trencl	n Depth	in				
	Des	igner's Max Trencl	n Depth	in				
	Bed Design Summary							
	Absorption Area ft ² Media Below Pipe in C	ode Maximum Beo	d Depth	in				
	Bed Width ft Bed Length ft	Designer's Max Bed	d Depth	in				
	Mound Design Summary							
	Absorption Area 760 ft ² Bed Length 38 ft	Вес	d Width 10	).0 ft				
	Absorption Width 20.0 ft Clean Sand Lift 1.1 ft	Berm Width (slop	e 0-1%)	ft				
	Upslope Berm Width 10.6 ft Downslope Berm Width 16.6 ft	Endslope Bern	n Width 1	3.9 ft				
	Total System Length 65.9 ft Total System Width 37.2 ft							



## OSTP Design Summary Worksheet University OF MINNESOTA



	At-Grade Design Summary								
	Absorption Bed Width		ft	Absorption Bed Length		ft	System Height		ft
	Absorption Bed Area		ft²	Upslope Berm Width		ft	Downslope Berm Width		ft
	Endslope Berm Width		ft	System Length		ft	System Width		ft
	<del></del>			Level Pressure Dist	ribution Su	mmary			
	No. of Perforated Laterals	3		Perforation Spacing	3	ft	Perforation Diameter	1/4	in
	Lateral Diameter	2.00	in	Supply Pipe Diameter	2.00	in	Minimum Dose Volume	0	gal
	Flow Rate	29.0	GPM	Total Head	24	ft	Maximum Dose Volume	112.5	gal
	Additional Info for Typ	e IV/Pretre	atment [	Design					
	A. Calculate the organic	loading usi	ng optio	n 1 or 2					
	1. Organic Loading = Pour	nds of BOD X	( Units						
	lbs/day	х		=	lbs BOD/da	y			
	2. Organic Loading to Pre	treatment L	Init = De	sign Flow X Estimated B	OD in mg/L	. in the	effluent X 8.35 ÷ 1,000,000		
	gpd X			mg/L X 8.35 ÷ 1,000,00	0 =		lbs BOD/day		
	B. Type of Pretreatment l	Jnit Being In	stalled:						
	C. Calculate Soil Treatme	nt System O	rganic Lo	ading: lbs. BOD/day ÷ B	ottom Area	= lbs/	day/ft ²		
	lbs/day			ft ² =	lbs/day/ft²				
:o	mments/Special Design Co	nsiderations	 i:						
									7
	I hereby certify	that I have	complete	d this work in accordance	e with all a	pplicab	le ordinances, rules and laws.		크
	•			4					
	Randy Andei	rson		Mal			634 07/	/21/14	
	(Designer		_	/// (Signature)			(License #)	Date)	_

#### **Becker County, Minnesota**

#### 776B—Snellman-Sugarbush complex, 2 to 8 percent slopes

#### **Map Unit Setting**

Elevation: 800 to 2,000 feet

Mean annual precipitation: 20 to 28 inches Mean annual air temperature: 37 to 45 degrees F

Frost-free period: 90 to 150 days

#### **Map Unit Composition**

Snellman and similar soils: 60 percent Sugarbush and similar soils: 30 percent

Minor components: 10 percent

#### **Description of Snellman**

#### Setting

Landform: Hillslopes on moraines

Landform position (two-dimensional): Summit, shoulder, backslope

Down-slope shape: Linear Across-slope shape: Linear Parent material: Loamy glacial till

#### Typical profile

A - 0 to 3 inches: sandy loam
E - 3 to 12 inches: sandy loam
Bt - 12 to 32 inches: sandy clay loa

Bt - 12 to 32 inches: sandy clay loam Bk, C - 32 to 60 inches: sandy loam

#### Properties and qualities

Slope: 2 to 8 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat):

Moderately high to high (0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Available water storage in profile: Moderate (about 8.5 inches)

#### Interpretive groups

Farmland classification: Farmland of statewide importance Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e

Line to de site On it Occasion D

Hydrologic Soil Group: B

#### **Description of Sugarbush**

#### Setting

Landform: Hillslopes on moraines

Landform position (two-dimensional): Summit, shoulder, backslope



Down-slope shape: Linear Across-slope shape: Linear

Parent material: Loamy mantle over sandy and gravelly outwash

deposits

#### Typical profile

A - 0 to 3 inches: sandy loam
E - 3 to 17 inches: loamy sand
Bt - 17 to 28 inches: sandy loam

2C - 28 to 60 inches: gravelly coarse sand

#### Properties and qualities

Slope: 2 to 8 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): High (1.98

to 5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent Available water storage in profile: Low (about 4.6 inches)

#### Interpretive groups

Farmland classification: Farmland of statewide importance Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3s

Hydrologic Soil Group: A

#### **Minor Components**

#### Balmlake

Percent of map unit: 2 percent

#### Wykeham

Percent of map unit: 2 percent

#### Eagleview

Percent of map unit: 2 percent

#### Two inlets

Percent of map unit: 2 percent

#### Egglake

Percent of map unit: 1 percent

Landform: Swales

#### Karlstad

Percent of map unit: 1 percent

#### **Data Source Information**

Soil Survey Area: Becker County, Minnesota Survey Area Data: Version 9, Dec 26, 2013



# OSTP Mound Design Worksheet UNIVERSITY OF MINNESOTA

Minnesota Pollution Control Agency



SYSTEM SIZING:	Pro	oject ID:					v 12.08.
A. Design Flow:	450	GPD		TAE	LE IXa	1	
B. Soil Loading Rate:	0.60	GPD/ft ²	LOADING RATES	100 mg		544445YP0000000000000	C2330004/OCCCCC049N/C2G4
C. Depth to Limiting Condition:	1.9	i ift	AND ABSORE	Treatmen		RCOLATION Treatment Le	
D. Percent Land Slope:	4.0	<b>1</b> %	Percolation Rate	Absorption	Mound	Absorption	Mound
E. Design Media Loading Rate:	1,2	/^° ☐GPD/ft²	(MPI)	Area Loading Rate	Absorption Ratio	Area Loading Rate	Absorption Ratio
•				(gpd/ft²)		(gpd/ft ¹ )	
F. Mound Absorption Ratio (Table IXa):	2.00	_	<0.1 0.1 to 5	1.2	1	1.6	1
G. Design Contour Loading Rate:	12.0	GPD/ft	0.1 to 5 (fine sand	0.6	2	1.0	1.6
Table I  MOUND CONTOUR LOADING RATES:			and loamy fine sand) 6 to 15	0.78	1.5	1	1.6
Measured * Texture - derived	Contour		16 to 30	0.6	2	0.78	2
Perc Rate OR mound absorption ratio	Loading Rate:		31 to 45	0.5	2.4	0.78	2
≤ 60mpi 1.0, 1.3, 2.0, 2.4, 2.6→	≤12		46 to 60	0.45	2.6	0.6	2.6
2 dompt 1.0, 1.3, 2.0, 2.4, 2.6			61 to 120	-	5	0.3	5.3
61-120 mpi OR 5.0	≤12		>120			•	-
DISPERSAL MEDIA SIZING							
A. Calculate Required Dispersal Bed Area: L	Design Flow (1.	A) ÷ Desigr	n Media Loading R	Rate (1.E) =	ft ²		
1			=				
	I ⊿5∩	CBD ·	1 20	DD /6+2		375	2
If a larger dispersal media area	450	GPD ÷	1.20 G	iPD/ft ² =		375 ft	2
If a larger dispersal media area is desired, enter size:	450 380	GPD ÷	1.20 G	iPD/ft ² =		375 ft	2
	380	ft²			L		2
is desired, enter size:	380	ft²	gn Media Loading	g Rate (1.E)	= Bed Wid		
is desired, enter size:  B. Calculate Dispersal Bed Width: Contour I	380 Loading Rate (1	ft ² 1.G) ÷ Desi	gn Media Loading	<b>;                                    </b>	= Bed Wid	ith	
is desired, enter size:	380 Loading Rate (1 12.0 al Bed Area (2.7	ft ² 1.G) ÷ Desi  ft ÷ [  A) ÷ Bed W	gn Media Loading 1.2 g idth (2.B) = Bed	g Rate (1.E) pd/ft ² = Length	≃ Bed Wid	dth 10 ft	
is desired, enter size: <b>B.</b> Calculate <i>Dispersal Bed Width: Contour I</i>	380 Loading Rate (1	ft ² 1.G) ÷ Desi	gn Media Loading	g Rate (1.E) pd/ft ² = Length	= Bed Wid	ith	
is desired, enter size: <b>B.</b> Calculate <i>Dispersal Bed Width: Contour I</i>	380 Loading Rate (1 12.0 al Bed Area (2.7	ft ² 1.G) ÷ Desi  ft ÷ [  A) ÷ Bed W	gn Media Loading 1.2 g idth (2.B) = Bed	g Rate (1.E) pd/ft ² = Length : =	≃ Bed Wid	dth 10 ft	
is desired, enter size:  B. Calculate Dispersal Bed Width: Contour I  C. Calculate Dispersal Bed Length: Dispersal	380  Loading Rate (1 12.0  al Bed Area (2.4 380	ft ² I.G) ÷ <i>Desi</i> ft ÷ [  A) ÷ <i>Bed W</i> ft ² ÷ [	gn Media Loading 1.2 g idth (2.B) = Bed 10 ft	g Rate (1.E) pd/ft ² = Length : =	≃ Bed Wid	dth 10 ft	
is desired, enter size:  B. Calculate Dispersal Bed Width: Contour I  C. Calculate Dispersal Bed Length: Dispersal  D. Enter Dispersal Media:	380  Loading Rate (1 12.0  al Bed Area (2.4 380  Component Leng	ft ² I.G) ÷ Desi  ft ÷ [  A) ÷ Bed W  ft ² ÷ [  gth:	gn Media Loading 1.2 g idth (2.B) = Bed 10 ft	g Rate (1.E) pd/ft ² = Length : = in ÷	= Bed Wid	dth 10 ft	
is desired, enter size:  B. Calculate Dispersal Bed Width: Contour II  C. Calculate Dispersal Bed Length: Dispersal  D. Enter Dispersal Media:  E. If using a registered product, enter the Contour II  D. Enter Dispersal Media:	380  Loading Rate (1 12.0  al Bed Area (2.4 380  Component Leng	ft ² I.G) ÷ Desi  ft ÷ [  A) ÷ Bed W  ft ² ÷ [  gth:	gn Media Loading 1.2 g idth (2.B) = Bed 10 ft rock	g Rate (1.E) pd/ft ² =  Length : = in ÷	38 12 = 12 =	dth 10 ft	ft
is desired, enter size:  B. Calculate Dispersal Bed Width: Contour Bed.  C. Calculate Dispersal Bed Length: Dispersal  D. Enter Dispersal Media:  E. If using a registered product, enter the Center of the Center o	380  Loading Rate (1 12.0  al Bed Area (2.4 380  Component Leng	ft ² I.G) ÷ Desi  ft ÷ [  A) ÷ Bed W  ft ² ÷ [  gth:	gn Media Loading 1.2 g idth (2.B) = Bed 10 ft rock	g Rate (1.E) pd/ft ² =  Length : = in ÷ (4.J) (Roun	38 12 = 12 =	dth 10 ft	ft
is desired, enter size:  B. Calculate Dispersal Bed Width: Contour Bed.  C. Calculate Dispersal Bed Length: Dispersal  D. Enter Dispersal Media:  E. If using a registered product, enter the Ced.  F. If using a registered product, enter the Ced.  G. Number of Components per Row = Bed Length: Dispersal	380  Loading Rate (1 12.0  al Bed Area (2.4 380  Component Leng Component Wide Length (2.C) div	ft²  I.G) ÷ Desi  It ÷ [  A) ÷ Bed W  It² ÷ [  gth:  rided by Co	gn Media Loading  1.2 g idth (2.B) = Bed  10 ft  rock  mponent Length  componer  (4.K) (Round up)	g Rate (1.E) pd/ft ² =  Length : = in ÷ (4.J) (Roun	38 12 = 12 = d up)	ft ft	ft
is desired, enter size:  B. Calculate Dispersal Bed Width: Contour Bed.  C. Calculate Dispersal Bed Length: Dispersal  D. Enter Dispersal Media:  E. If using a registered product, enter the Ced.  F. If using a registered product, enter the Ced.  G. Number of Components per Row = Bed Length: Dispersal  ft ÷  H. Number of Rows = Bed Width (2.B) divided Adjust Contour Loading Rate on Design Summer	380  Loading Rate (1 12.0  al Bed Area (2.4 380  Component Leng Component Wide Length (2.C) div  ft = ded by Compone mary page until t	ft²  I.G) ÷ Desi  It ÷ [  A) ÷ Bed W  It² ÷ [  gth:  rided by Co	gn Media Loading  1.2 g idth (2.B) = Bed  10 ft  rock  imponent Length  componer  (4.K) (Round up) is a whole number.	g Rate (1.E) pd/ft ² =  Length : = in ÷ (4.J) (Roun	38 12 = 12 = d up)	ft ft	ft
is desired, enter size:  B. Calculate Dispersal Bed Width: Contour Bed.  C. Calculate Dispersal Bed Length: Dispersal  D. Enter Dispersal Media:  E. If using a registered product, enter the Components per Row = Bed Length: Dispersal  If the Length: Dispersal  Media:  F. If using a registered product, enter the Components per Row = Bed Length: Dispersal  If the Length: Dispersal Media:  If the	380  Loading Rate (1 12.0  al Bed Area (2.4 380  Component Leng Component Wide ength (2.C) div  ft = ded by Compone mary page until t	ft²  I.G) ÷ Desi  It ÷ [  A) ÷ Bed W  It² ÷ [  gth:  rided by Co  ent Width  this number	gn Media Loading  1.2 g idth (2.B) = Bed  10 ft  rock  mponent Length  componer  (4.K) (Round up) is a whole number.  rows	g Rate (1.E)  pd/ft ² =  Length  : = in ÷  (4.J) (Roun  ats/row	38 12 = 12 = d up)	ft ft	ft
is desired, enter size:  B. Calculate Dispersal Bed Width: Contour Bed.  C. Calculate Dispersal Bed Length: Dispersal  D. Enter Dispersal Media:  E. If using a registered product, enter the Ced.  F. If using a registered product, enter the Ced.  G. Number of Components per Row = Bed Led.  If the Ced.  H. Number of Rows = Bed Width (2.B) divided Adjust Contour Loading Rate on Design Summers	380  Loading Rate (1 12.0  al Bed Area (2.4 380  Component Leng Component Wide ength (2.C) div  ft = ded by Compone mary page until t	ft²  I.G) ÷ Desi  It ÷ [  A) ÷ Bed W  It² ÷ [  gth:  rided by Co  ent Width  this number	gn Media Loading  1.2 g idth (2.B) = Bed  10 ft  rock  mponent Length  componer  (4.K) (Round up) is a whole number.  rows	g Rate (1.E)  pd/ft ² =  Length  : = in ÷  (4.J) (Roun  ats/row	38 12 = 12 = d up)	ft ft	ft



ABSORPTION AREA SIZING
Note: Mound setbacks are measured from the Absorption Area.
A. Calculate Absorption Width: Bed Width (2.B) X Mound Absorption Ratio (1.F) = Absorption Width
10.0 ft X 2.0 = 20.0 ft
B. For slopes >1%, the Absorption Width is measured downhill from the upslope edge of the Bed.
Calculate Downslope Absorption Width: Absorption Width (3.A) - Bed Width (2.B) = ft
20.0   ft -   10.0   ft =   10.0   ft
MOUND SIZING
A. Calculate Clean Sand Lift: 3 feet minus Depth to Limiting Condition (1.C) = Clean Sand Lift (1 ft minimum)
3.0 ft - 1.9 ft = 1.1 ft Design Sand Lift (optional):
B. Calculate Upslope Height: Clean Sand Lift (4.A) + media depth + cover (1 ft.) = Upslope Height
1.1   ft + 1.0   ft + 1.0   ft = 3.1   ft
D-34: Slope Multiplier Table  Land Slope % 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Upslope 3:1 3.00 2.91 2.83 2.75 2.68 2.61 2.54 2.48 2.42 2.36 2.31 2.26 2.21 2.17 2.13 2.09 2.06 2.03 2.00 1.97 1.95 1.93 1.91 1.89 1.87 1.85
Berm Ratio 4:1 4.00 3.85 3.70 3.57 3.45 3.33 3.23 3.12 3.03 2.94 2.86 2.78 2.70 2.62 2.55 2.48 2.41 2.35 2.29 2.23 2.18 2.13 2.08 2.03 1.98 1.93
Land Slope % 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Downslope 3:1 3.00 3.09 3.19 3.30 3.41 3.53 3.66 3.80 3.95 4.11 4.29 4.48 4.69 4.95 5.24 5.55 5.88 6.24 6.63 7.04 7.47 7.93 8.42 8.93 9.46 10.02
Berm Ratio 4:1 4.00 4:17 4:35 4:54 4:76 5:00 5:26 5:56 5:88 6:25 6:67 7:14 7:69 8:29 8:32 9:57 10:24 10:94 11:67 12:42 13:19 13:99 14:82 15:67 16:54 17:44
C. Select Upslope Berm Multiplier (based on land slope): 3.45 (figure D-34)
D. Calculate Upslope Berm Width: Multiplier (4.C) X Upslope Mound Height (4.B) = Upslope Berm Width
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
E. Calculate Drop in Elevation Under Bed: Bed Width (2.B) $\times$ Land Slope (1.D) $\div$ 100 = Drop (ft)  10.0 ft $\times$ 4.0 $\%$ $\div$ 100 = 0.40 ft
F. Calculate Downslope Mound Height: Upslope Height (4.B) + Drop in Elevation (4.E) = Downslope Height
3.1 ft + $\begin{pmatrix} 0.40 \\ ft = \end{pmatrix}$ ft
G. Select Downslope Berm Multiplier (based on land slope): 4.76 (figure D-34)
H. Calculate Downslope Berm Width: Multiplier (4.G) X Downslope Height (4.F) = Downslope Berm Width
4.76 x 3.5 ft = 16.6 ft
I. Calculate Minimum Berm to Cover Absorption Area: Downslope Absorption Width (3.B or 3.C) + 4 ft. = ft
$\begin{array}{ c c c c c c }\hline 10.0 & ft + \boxed{} & 4 & ft = \boxed{} & 14.0 & ft \\ \hline \end{array}$
J. Design Downslope Berm = greater of 4H and 4I: 16.6 ft
K. Select Endslope Berm Multiplier: 4.00 (usually 3.0 or 4.0)
L. Calculate Endslope Berm (4.K) X Downslope Mound Height (4.F) = Endslope Berm Width
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
M. Calculate Mound Width: Upslope Berm Width (4.D) + Bed Width (2.B) + Downslope Berm Width (4.J) = ft
10.6   ft +   10.0   ft +   16.6   ft =   37.2   ft
N. Calculate Mound Length: Endslope Berm Width $(4.L)$ + Bed Length $(2.C)$ + Endslope Berm Width $(4.L)$ = ft  13.9 ft + 38.0 ft + 13.9 ft = 65.9 ft
Comments:
1

,

	:		
	·		
- 1			
l			
·			
ĺ			
ľ			
ŀ			
l			
l			
	ı		





## OSTP Mound Materials Worksheet University OF MINNESOTA



A. Calculate Bed (rock) Volume: Bed Length (2.C) X Bed Width (2.B) X Depth = Volume (ft²)  38.0 ft X 10.0 ft X 1.0 = 380.0 ft²  Divide ft² by 27 ft²/yd³ to calculate cubic yards:  380.0 ft³ + 27 = 14.1 yd³  Add 20% for constructability:  14.1 yd³ X 1.2 = 16.9 yd³  B. Calculate Clean Sand Volume:  Volume Under Rock bed: Average Sand Depth × Media Width × Media Length = cubic feet  1.3 ft X 10.0 ft X 38.0 ft = 487.7 ft³  For a Mound on a slope from 0-1%  Volume from Length = ((Upslope Mound Height - 1) X Absorption Width Beyond Bed X Media Bed Length)  [
Divide ft³ by 27 ft³/yd³ to calculate cubic yards:  380.0
Second Structability:   Seco
B. Calculate Clean Sand Volume:  Volume Under Rock bed: Average Sand Depth × Media Width × Media Length = cubic feet  1.3 ft × 10.0 ft × 38.0 ft = 487.7 ft ³ For a Mound on a slope from 0-1%  Volume from Length = ((Upslope Mound Height - 1) × Absorption Width Beyond Bed × Media Bed Length)  ft - 1) x
B. Calculate Clean Sand Volume:  Volume Under Rock bed: Average Sand Depth x Media Width x Media Length = cubic feet  1.3 ft X 10.0 ft X 38.0 ft = 487.7 ft³  For a Mound on a slope from 0-1%  Volume from Length = ((Upslope Mound Height - 1) X Absorption Width Beyond Bed X Media Bed Length)    Total Clean Sand Volume: Volume from Length + Volume from Width + Volume Under Media   ft³ +   ft³ +   ft³ =   ft³  For a Mound on a slope greater than 1%  Upslope Volume: ((Upslope Mound Height - 1) X 3 X Bed Length) + 2 = cubic feet  (( 3.1 ft - 1) X 3.0 ft X 38.0 ) + 2 = 118.8 ft³  Endslope Volume: ((Downslope Height - 1) X 3 X Media Width = cubic feet  (( 3.5 ft - 1) X 10.0 ft X 38.0 ) + 2 = 471.8 ft³  Endslope Volume: ((Downslope Mound Height - 1) X 3 X Media Width = cubic feet  (( 3.5 ft - 1) X 3.0 ft X 10.0 ft = 74.5 ft³
B. Calculate Clean Sand Volume:  Volume Under Rock bed: Average Sand Depth x Media Width x Media Length = cubic feet  1.3 ft X 10.0 ft X 38.0 ft = 487.7 ft³  For a Mound on a slope from 0-1%  Volume from Length = ((Upslope Mound Height - 1) X Absorption Width Beyond Bed X Media Bed Length)  ft - 1) X X ft =   Volume from Width = ((Upslope Mound Height - 1) X Absorption Width Beyond Bed X Media Bed Width)  ft - 1) X X ft =   Total Clean Sand Volume: Volume from Length + Volume from Width + Volume Under Media  ft³ + ft³ + ft³ + ft³ =   For a Mound on a slope greater than 1%  Upslope Volume: ((Upslope Mound Height - 1) X 3 X Bed Length) + 2 = cubic feet  (( 3.1 ft - 1) X 3.0 ft X 38.0 ) + 2 = 118.8 ft³  Downslope Volume: ((Downslope Height - 1) x Downslope Absorption Width x Media Length) + 2 = cubic feet  (( 3.5 ft - 1) X 3.0 ft X 38.0 ) + 2 = 471.8 ft³  Endslope Volume: ((Downslope Mound Height - 1) x 3 x Media Width = cubic feet  (( 3.5 ft - 1) X 3.0 ft X 10.0 ft X 74.5 ft³
Volume Under Rock bed: Average Sand Depth $\times$ Media Width $\times$ Media Length = cubic feet  1.3  ft $\times$ 10.0  ft $\times$ 38.0  ft = 487.7  ft ³ For a Mound on a slope from 0-1%  Volume from Length = ((Upslope Mound Height - 1) $\times$ Absorption Width Beyond Bed $\times$ Media Bed Length)  [ ft - 1) $\times$
1.3   ft x   10.0   ft x   38.0   ft = 487.7   ft
Volume from Length = ((Upslope Mound Height - 1) X Absorption Width Beyond Bed X Media Bed Length)  ft -1) X
Volume from Length = ((Upslope Mound Height - 1) X Absorption Width Beyond Bed X Media Bed Length)  ft -1) X
Volume from Width = ((Upslope Mound Height - 1) X Absorption Width Beyond Bed X Media Bed Width)  ft - 1) X
Total Clean Sand Volume: Volume from Length + Volume from Width + Volume Under Media
Total Clean Sand Volume: Volume from Length + Volume from Width + Volume Under Media $ ft^3 + ft^3 + ft^3 + ft^3 = ft^3 $ For a Mound on a slope greater than 1%  Upslope Volume: ((Upslope Mound Height - 1) × 3 × Bed Length) + 2 = cubic feet $ ((3.1     ft - 1)                                  $
For a Mound on a slope greater than 1%  Upslope Volume: ((Upslope Mound Height - 1) $\times$ 3 $\times$ Bed Length) + 2 = cubic feet  ((\( \begin{align*} 3.1 & \text{ft - 1} \\ X & 3.0 \text{ft }  \\ \end{align*} \)  Downslope Volume: ((Downslope Height - 1) $\times$ Downslope Absorption Width $\times$ Media Length) + 2 = cubic feet  ((\( \begin{align*} 3.5 & \text{ft - 1} \\ X & 10.0 & \text{ft } \\ \end{align*} \)  Endslope Volume: ((Downslope Mound Height - 1) $\times$ 3 $\times$ Media Width = cubic feet  ((\( \begin{align*} 3.5 & \text{ft - 1} \)   \text{30.0} \\ \end{align*} \)  For a Mound on a slope greater than 1%  18.8 \text{ft}^3  18.8 \text{or} \)  For a Mound on a slope greater than 1%  18.8 \text{of t} \)  18.8 \text{of t} \)  For a Mound on a slope greater than 1%  18.8 \text{of t} \)  18.8 \text{of t} \)  18.8 \text{of t} \)  For a Mound on a slope greater than 1%  18.8 \text{of t} \)  18.8 \text{of t} \text{of t} \)  18.8 \text{of t} o
For a Mound on a slope greater than 1%  Upslope Volume: ((Upslope Mound Height - 1) × 3 × Bed Length) + 2 = cubic feet  ((
Upslope Volume: ((Upslope Mound Height - 1) $\times$ 3 $\times$ Bed Length) + 2 = cubic feet  ((\( \begin{array}{cccccccccccccccccccccccccccccccccccc
Downslope Volume: ((Downslope Height - 1) $\times$ Downslope Absorption Width $\times$ Media Length) + 2 = cubic feet  ((\begin{array}{cccccccccccccccccccccccccccccccccccc
Downslope Volume: ((Downslope Height - 1) $\times$ Downslope Absorption Width $\times$ Media Length) + 2 = cubic feet  (( 3.5
((
Endstope Volume: (Downstope Mound Height - 1) $\times$ 3 $\times$ Media Width = cubic feet  ( 3.5  ft - 1 ) $\times$ 3.0 ft $\times$ 10.0 ft = 74.5 ft ³
( 3.5 ft - 1) X 3.0 ft X 10.0 ft = $74.5$ ft ³
Total Clean Sand Volume: Upslope Volume + Downslope Volume + Endslope Volume + Volume Under Media
118.8 $ft^3 + 471.8   ft^3 + 74.5   ft^3 + 487.7   ft^3 = 1152.8   ft^3$
Divide ft ³ by 27 ft ³ /yd ³ to calculate cubic yards:
Add 20% for constructability:
C. Calculate Sandy Berm Volume:
Total Berm Volume (approx): ((Avg. Mound Height · 0.5 ft topsoil) × Mound Width × Mound Length) ÷ 2 = cubic feet
( 3.3 . 0.5 )ft X 37.2 ft X 65.9 ) $\div$ 2 = 3411.6 ft ³
Total Mound Volume - Clean Sand volume -Rock Volume = cubic feet
3411.6 $ft^3$ - 1152.8 $ft^3$ - 380.0 $ft^3$ = 1878.8 $ft^3$
Divide ft ³ by 27 ft ³ /yd ³ to calculate cubic yards: $1878.8$ ft ³ ÷ 27 = $69.6$ yd ³
Add 20% for constructability: $69.6   yd^3 \times 1.2 = 83.5   yd^3$
D. Calculate Topsoil Material Volume: Total Mound Width X Total Mound Length X .5 ft
37.2 ft X 65.9 ft X 0.5 ft = 1225.7 ft ³
Divide ft ³ by 27 ft ³ /yd ³ to calculate cubic yards: $1225.7$ ft ³ ÷ 27 = $45.4$ yd ³
Add 20% for constructability: $45.4   yd^3 \times 1.2 = 54.5   yd^3$



Minnesota Pollution Control Agency

# OSTP Pressure Distribution Design Worksheet





	itioi Agency				Proje	ct ID:						v 12.08.06
1.	Media Bed Width:					10	ft					
2.	2. Minimum Number of Laterals in system/zone = [(Media Bed Width (Line1) - 4) ÷ 3] + 1 round up to the neareast whole number + 1.											
		( 10		-4)+		3	$\neg$	·				
3.	3. Designer Selected Number of Laterals:  Cannot be less than line 2 (accept in at-grades)  Insulated access box											
4.								V				
5.	Geotextile						12*					
6.	6. Length of Laterals = Media Bed Length - 2 Feet.											
	38 -	2ft	=	36	ft	Perforatio	n can not be closer	then 1 fo		Perforation sp	acing: 2° to 3	
7.	Determine the <i>Num</i> round down to the r			-	— Divide th	e Length o	f Laterals (Line 6) I	oy the <i>Pe</i>	rforation	Spacing (	Line 4) ar	nd
	Number of Perforat	ion Space	s =	36	ft	÷	3 ft	=	12	Spaces		
8. Number of Perforations per Lateral is equal to 1.0 plus the Number of Perforation Spaces (Line 7). Check table below to verify the number of perforations per lateral guarantees less than a 10% discharge variation. The value is double with a center manifold.												
Perforations Per Lateral = 12 Spaces + 1 = 13 Perfs. Per Lateral												
Maximum Number of Perforations Per Lateral to Guarantee < 10% Discharge Variation												
1/4 Inch Perforations 7/32 Inch Perforations												
Perforation Spacing (Feet)  Pipe Diameter (Inches)  Perforation Spacing  Perforation Spacing  Pipe Diameter (Inches)				nches)								
FEIL	y across spacing (reec)	1	114	11/2	2	3	(Feet)	-	114	115	2	3
1.05	2	10	13	18	30	60	2	11	16	21	34	68
·····	21/1	8	12	16	28	54	21/1	10	14	20	32	64
	3	8	12	16	25	52	3	9	14	19	30	60
		3/16 Inch	Perforatio	ns				1/8 1	nch Perfor			
Porfe	oration Spacing (Feet)		Pipe C	)iameter (I	nches)		Perforation Spacing		Pipe [	)iameter (li		
		1	114	11/2	2	3	(Feet)	1	114	11/2	2	3
	2	12	18	26	46	87	2	21	33	44	74	149
7250,07696245	21/2	12	17	24	40	80	21/1	20	30	41	69	135
	3	12	16	22	37	75	3	20	29	38	64	128
9. Total Number of Perforations equals the Number of Perforations per Lateral (Line 8) multiplied by the Number of Perforated Laterals (Line 3).												
	13 Perf.	Per Later	al X		3	Number of	f Perf. Laterals	=	39	Total Nu	umber of I	Perf.
10.	Select Type of Mani	ifold Conn	ection (E	nd or Cen	ter):	☑ End	Center Center					
11.	11. Select Lateral Diameter (See Table): 2.00 in											



**OSTP Pressure Distribution** Design Worksheet

University
OF MINNESOTA

12. Calculate the Square Feet per Perforation. Recommended value is 4-11 ft ² per perforation.  Does not apply to At-Grades  a. Bed Area = Bed Width (ft) X Bed Length (ft)  10	16	meter  /32
a. Bed Area = Bed Width (ft) X Bed Length (ft)  10  ft	1/8 3/16 7, 0.18 0.41 0. 0.22 0.51 0. 0.26 0.59 0. 0.29 0.65 0. 0.32 0.72 0. 0.37 0.83 1. 0.41 0.93 1. Dwellings with 3/16 inch to reperforations  Dwellings with 1/8 inch perferotions  Table II  Volume of Liquiper  Pipe  Pipe  Pipe  Liquiper  Pipe  Cinches) (Gall  1 0.00 1.25 0.00	/ ₁₂ 1/ ₄ .56 0.76 .69 0.9 .80 1.04 .89 1.13 .98 1.28 .13 1.47 .26 1.65 .174 inch .275 with 3/16 .28 .28
b. Square Foot per Perforation = Bed Area divided by the Total Number of Perforations (Line 9).  380 ft² ÷ 39 perforations = 9.7 ft²/perforations  3. Select Minimum Average Head: 1.0 ft  4. Select Perforation Discharge (GPM) based on Table: 0.74 GPM per Perforation  5. Determine required Flow Rate by multiplying the Total Number of Perforations by the Perforation Discharge.  39 Perfs X 0.74 GPM per Perforation = 29 GPM  6. Volume of Liquid Per Foot of Distribution Piping (Table II): 0.170 Gallons/ft  7. Volume of Distribution Piping = [Number of Perforated Laterals (Line 3) X Length of Laterals (Line 6) X (Volume of Liquid Per Foot of Distribution Piping (Line 16)]  3 X 36 ft X 0.170 gal/ft = 18.4 Gallons  8. Minimum Dose = Volume of Distribution Piping (Line 17) X 4  18.4 gals X 4 = 73.4 Gallons	16	1.56 0.74 1.69 0.9 1.80 1.98 1.28 1.13 1.47 1.26 1.65 1/4 inch  forations  STS with 3/16 is  STS with 1/8 ir  id in  id in  luid  Foot lons)
b. Square Foot per Perforation = Bed Area divided by the Total Number of Perforations (Line 9).  380 ft² ÷ 39 perforations = 9.7 ft²/perforations  3. Select Minimum Average Head: 1.0 ft  4. Select Perforation Discharge (GPM) based on Table: 0.74 GPM per Perforation  5. Determine required Flow Rate by multiplying the Total Number of Perforations by the Perforation Discharge.  39 Perfs X 0.74 GPM per Perforation = 29 GPM  6. Volume of Liquid Per Foot of Distribution Piping (Table II): 0.170 Gallons/ft  7. Volume of Distribution Piping = [Number of Perforated Laterals (Line 3) X Length of Laterals (Line 6) X (Volume of Liquid Per Foot of Distribution Piping (Line 16)]  3 X 36 ft X 0.170 gal/ft = 18.4 Gallons  8. Minimum Dose = Volume of Distribution Piping (Line 17) X 4  18.4 gals X 4 = 73.4 Gallons	0.22 0.51 0. 0.26 0.59 0. 0.29 0.65 0. 0.32 0.72 0. 0.37 0.83 1. 0.41 0.93 1. Dwellings with 3/16 inch to perforations Dwellings with 1/8 inch perforations Other establishments and MS inch to 1/4 inch perforations Other establishments and MS perforations  Table II  Volume of Liquippe  Pipe  Pipe  Liquippe  Pipe  Cinches) (Gall 1 0.00 1.25 0.00	.69 0.9 .80 1.04 .89 1.17 .98 1.28 .13 1.47 .26 1.65 1/4 inch forations STS with 3/16 s STS with 1/8 ir id in uid Foot lons)
380 ft² ÷ 39 perforations = 9.7 ft²/perforations  3. Select Minimum Average Head: 1.0 ft  4. Select Perforation Discharge (GPM) based on Table: 0.74 GPM per Perforation  5. Determine required Flow Rate by multiplying the Total Number of Perforations by the Perforation Discharge.  39 Perfs X 0.74 GPM per Perforation = 29 GPM  6. Volume of Liquid Per Foot of Distribution Piping (Table II): 0.170 Gallons/ft  7. Volume of Distribution Piping = [Number of Perforated Laterals (Line 3) X Length of Laterals (Line 6) X (Volume of Liquid Per Foot of Distribution Piping (Line 16)]  3 X 36 ft X 0.170 gal/ft = 18.4 Gallons  8. Minimum Dose = Volume of Distribution Piping (Line 17) X 4  18.4 gals X 4 = 73.4 Gallons	0.26 0.59 0. 0.29 0.65 0. 0.32 0.72 0. 0.37 0.83 1. 0.41 0.93 1. Dwellings with 3/16 inch to reperforations  Dwellings with 1/8 inch perforations  Other establishments and MS inch to 1/4 inch perforations  Table II  Volume of Liquiple  Pipe  Pipe  Pipe  Liquiple  Pipe  Cinches) (Gall  1 0.00 1.25 0.0	1.94 1.98 1.28 1.13 1.47 1.26 1.65 1/4 inch 1.98 1.78 1.78 1.78 1.78 1.78 1.78 1.78 1.7
3. Select Minimum Average Head:  1.0 ft  4. Select Perforation Discharge (GPM) based on Table:  0.74 GPM per Perforation  5. Determine required Flow Rate by multiplying the Total Number of Perforations by the Perforation Discharge.  39 Perfs X 0.74 GPM per Perforation = 29 GPM  6. Volume of Liquid Per Foot of Distribution Piping (Table II):  7. Volume of Distribution Piping = [Number of Perforated Laterals (Line 3) X Length of Laterals (Line 6) X (Volume of Liquid Per Foot of Distribution Piping (Line 16)]  3 X 36 ft X 0.170 gal/ft = 18.4 Gallons  8. Minimum Dose = Volume of Distribution Piping (Line 17) X 4  18.4 gals X 4 = 73.4 Gallons	0.29 0.65 0. 0.32 0.72 0. 0.37 0.83 1. 0.41 0.93 1. Dwellings with 3/16 inch to reperforations  Dwellings with 1/8 inch perforations  Other establishments and MS inch to 1/4 inch perforations  Other establishments and MS perforations  Table II  Volume of Liquit Pipe  Pipe Liquit Pipe  Pipe Liquit Oidents (Gall 1.25 0.00 1.25 0.01	.89 1.17 .98 1.28 .13 1.47 .26 1.65 1/4 inch forations STS with 3/16 s STS with 1/8 in id in id in Foot lons)
3. Select Minimum Average Head:  1.0 ft  4. Select Perforation Discharge (GPM) based on Table:  5. Determine required Flow Rate by multiplying the Total Number of Perforations by the Perforation Discharge.  39 Perfs X 0.74 GPM per Perforation = 29 GPM  6. Volume of Liquid Per Foot of Distribution Piping (Table II):  7. Volume of Distribution Piping = [Number of Perforated Laterals (Line 3) X Length of Laterals (Line 6) X (Volume of Liquid Per Foot of Distribution Piping (Line 16)]  3 X 36 ft X 0.170 gal/ft = 18.4 Gallons  8. Minimum Dose = Volume of Distribution Piping (Line 17) X 4  18.4 gals X 4 = 73.4 Gallons	0.32 0.72 0.30 1. 0.37 0.83 1. 0.41 0.93 1. Dwellings with 3/16 inch to perforations  Dwellings with 1/8 inch performents and MS inch to 1/4 inch perforations  Table II  Volume of Liquit Pipe  Pipe Liquit Pipe  Diameter (inches) (Gall 1.25 0.00 1.25 0.01	98 1.28 .13 1.47 .26 1.65 1/4 inch  forations STS with 3/16 s STS with 1/8 in  id in  uid Foot Jons)
4. Select Perforation Discharge (GPM) based on Table:  Determine required Flow Rate by multiplying the Total Number of Perforations by the Perforation Discharge.  39 Perfs X 0.74 GPM per Perforation = 29 GPM  5. Volume of Liquid Per Foot of Distribution Piping (Table II): 0.170 Gallons/ft  7. Volume of Distribution Piping = [Number of Perforated Laterals (Line 3) X Length of Laterals (Line 6) X (Volume of Liquid Per Foot of Distribution Piping (Line 16)]  3 X 36 ft X 0.170 gal/ft = 18.4 Gallons  Minimum Dose = Volume of Distribution Piping (Line 17) X 4  18.4 gals X 4 = 73.4 Gallons	0.37 0.83 1.  0.41 0.93 1.  Dwellings with 3/16 inch to operforations  Dwellings with 1/8 inch performents and MS inch to 1/4 inch perforations  Other establishments and MS perforations  Table II  Volume of Liquit Pipe  Pipe Liquit Pipe  Diameter (inches) (GaII 0.00 1.25 0.00 1.5 0.1	.13
4. Select Perforation Discharge (GPM) based on Table:  Determine required Flow Rate by multiplying the Total Number of Perforations by the Perforation Discharge.  39 Perfs X 0.74 GPM per Perforation = 29 GPM  5. Volume of Liquid Per Foot of Distribution Piping (Table II): 0.170 Gallons/ft  7. Volume of Distribution Piping = = [Number of Perforated Laterals (Line 3) X Length of Laterals (Line 6) X (Volume of Liquid Per Foot of Distribution Piping (Line 16)]  3 X 36 ft X 0.170 gal/ft = 18.4 Gallons  Minimum Dose = Volume of Distribution Piping (Line 17) X 4  18.4 gals X 4 = 73.4 Gallons	0.41 0.93 1.  Dwellings with 3/16 inch to perforations  Dwellings with 1/8 inch perforations  Dwellings with 1/8 inch perforations  Other establishments and MS perforations  Table II  Volume of Liquit Pipe  Pipe Liquit Pipe  Diameter (Gall 1 0.00 1.25 0.00 1.5 0.1	.26 1.65 1/4 inch  forations  STS with 3/16 s STS with 1/8 in  id in  uid Foot lons)
Perforation Discharge.  39 Perfs X 0.74 GPM per Perforation = 29 GPM  5. Volume of Liquid Per Foot of Distribution Piping (Table II): 0.170 Gallons/ft  7. Volume of Distribution Piping = [Number of Perforated Laterals (Line 3) X Length of Laterals (Line 6) X (Volume of Liquid Per Foot of Distribution Piping (Line 16)]  3 X 36 ft X 0.170 gal/ft = 18.4 Gallons  3. Minimum Dose = Volume of Distribution Piping (Line 17) X 4  18.4 gals X 4 = 73.4 Gallons	perforations  Dwellings with 1/8 inch performents and MS inch to 1/4 inch perforations  Other establishments and MS perforations  Table II  Volume of Liquit Pipe  Pipe Liquit Pipe  Diameter (Gall III)  1 0.0  1.25 0.0  1.5 0.1	forations STS with 3/16 s STS with 1/8 in id in juid Foot Jons)
39 Perfs X 0.74 GPM per Perforation = 29 GPM  5. Volume of Liquid Per Foot of Distribution Piping (Table II): 0.170 Gallons/ft  7. Volume of Distribution Piping =  = [Number of Perforated Laterals (Line 3) X Length of Laterals (Line 6) X (Volume of Liquid Per Foot of Distribution Piping (Line 16)]  3	Other establishments and MS inch to 1/4 inch perforations Other establishments and MS perforations  Table II Volume of Liquin Pipe Pipe Pipe Liquin Pipe Diameter (inches) (Gall 1 0.0 1.25 0.0 1.5 0.1	STS with 3/16 s STS with 1/8 in id in juid Foot lons)
39 Perfs X 0.74 GPM per Perforation = 29 GPM 6. Volume of Liquid Per Foot of Distribution Piping (Table II): 0.170 Gallons/ft 5 feet 7. Volume of Distribution Piping = = [Number of Perforated Laterals (Line 3) X Length of Laterals (Line 6) X (Volume of Liquid Per Foot of Distribution Piping (Line 16)]  3	inch to 1/4 inch perforations  Other establishments and MS perforations  Table II Volume of Liquid Pipe  Pipe Liquid Diameter (inches) (GaII 1 0.00 1.25 0.00 1.5 0.1	s STS with 1/8 in id in juid Foot lons)
7. Volume of Distribution Piping =  = [Number of Perforated Laterals (Line 3) X Length of Laterals (Line 6) X (Volume of Liquid Per Foot of Distribution Piping (Line 16)]  3	Perforations  Table II  Volume of Liquical Pipe  Pipe Liquical Liquical Pipe (Gall 1 0.0 1.25 0.0 1.5 0.1	id in uid Foot lons)
= [Number of Perforated Laterals (Line 3) X Length of Laterals (Line 6) X (Volume of Liquid Per Foot of Distribution Piping (Line 16)]  3	Volume of Liquippe Pipe Liquippe Diameter (inches) (Gall 1 0.0 1.25 0.0 1.5 0.1	uid Foot Ions)
alternate location of pipe from pump	3 0.3 4 0.6	110 170 380







### OSTP Basic Pump Selection Design Worksheet

Univi of Min

	300 mil 1
VERSITY	
NNESOTA	

I. PUMP CAPACITY	Project ID:			v 12.08.0
Pumping to Gravity or Pressure Distribution:	○ Gravity ● Pressure	Selection req	uired	
1. If pumping to gravity enter the gallon per minute of	of the pump:	GPM (10	45 gpm)	
2. If pumping to a pressurized distribution system:	29.	0 GPM		
(Line 11 of Pressure Distribution)				Soil treatment system & point of discharge
2. HEAD REQUIREMENTS				& point of discharge
A. Elevation Difference 17 ft			Supply line length	
between pump and point of discharge:	Inlet p	ipe	Elevation or	
	l Name		difference	
B. Distribution Head Loss: 5 ft		1度 英[[]]		<b></b>
C. Additional Head Loss:	ue to special equipment, etc.)			
		Table I.Friction	Loss in Plastic Pipe pe	r 100ft
Distribution Head Lo	55	Flow Rate	Pipe Diameter (inch	
Gravity Distribution = Oft		(GPM)	1 1.25 1.5	2
Pressure Distribution based on Minimur	n Average Head	10	9.1 3.1 1.3	0.3
Value on Pressure Distribution Workshe	et:	12	12.8 4.3 1.8	0.4
Minimum Average Head Distrib	ution Head Loss	14	17.0 5.7 2.4	0.6
1ft	5ft	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	21.8 7.3 3.0	0.7
2ft	6ft	18	9.1 3.8	0.9
5ft	10ft	20	11.1 4.6	1.1
		25	16.8 6.9	1.7
. 1. Supply Pipe Diameter: 2.0 in		30	23.5 9.7	2.4
		35	12.9	3.2
2. Supply Pipe Length: 80 ft		40	16.5	4.1
. Friction Loss in Plastic Pipe per 100ft from Table I:		45	20.5	5.0
<u> </u>		50		6.1
Friction Loss = 2.23 ft per 100ft of	of pipe	55		7.3 8.6
Determine Equivalent Pipe Length from pump dischar	go to soil dispersal area discharge	60 65		10.0
<ul> <li>Determine Equivalent Pipe Length from pump discharge point. Estimate by adding 25% to supply pipe length from pump discharge.</li> </ul>		70		11.4
(D.2) X 1.25 = Equivalent Pipe Length		75	(A) (1.484) (3.8 ) (4.40) (8. ) (3. ) (4. )	13.0
		85		16.4
80 ft X 1.25 =	100.0 ft	95		20.1
G. Calculate Supply Friction Loss by multiplying Friction	Loss Per 100ft (Line E) by the Equivo	alent Pipe Length (Li	ne F) and divide by 100.	
Supply Friction Loss =	, , , , , ,			
2.23 ft per 100ft X	100.0 ft ÷ 100	= 2.2	T _{ft}	
Z.25 It per foote X	100.0			
1. Total Head requirement is the sum of the Elevation D	Difference (Line A), the Distribution F	lead Loss (Line B), Ad	ditional Head Loss (Line C),	and the Supr
Friction Loss (Line G )	.,,	(=	, "	
			242	
17.0 ft + 5.0 ft	+ft +	2.2   ft =	24.2 ft	
. PUMP SELECTION				
A pump must be selected to deliver at least	<b>29.0</b> GPM (Line 1 or Line 2) wi	th at least	<b>24.2</b> feet of to	otal head.
Comments:				
		<del></del>		



•	F	PERCOLA	TION TES	T SHEET	1	1
est hole lo	cation propos	seo site	Hole#	Da	ate test hole was prepared: 1/2	1/14_
epth of ho	le bottom:		_ inches	Diameter of hole	:_ <u>_(e</u>	nes
oil Data fr	om test hole: 	depth, inches		soil texture:	soil colo	r
ate and ho	our of initial wate	er filling: 2.3	$\frac{2 \cdot 4}{1 \cdot 4}$ Do not in hole for 4 ho	epth of initial wa	gravel in bottom of hole:ater filling:/2above l	nole bottom
ercolation Iaximum v	test conducted b water depth abov	y: Kanoy re hole bottom	ftn de 50 during test:	inche	Percolation test started at	(am (pm)
TIME	INTERVAL (MINUTES)	WATER DEPTH	WATER DROP (fraction)	WATER DROP (decimal)	PERC RATE CALCULATION	conversions 1/16 = .06
	start 20	8 7 18	7/8	. 88	$\frac{20}{\text{TIME}} \div \frac{33}{\text{DROP}} = \frac{22.7}{\text{PERC}} \mathbf{A}$	1/8 = .13 3/16 = .19
	REFILL 20	- <u>8</u> - <u>7</u> '8	7/8	88	$\frac{20}{\text{TIME}} \cdot \frac{\text{(f)}}{\text{DROP}} = \frac{22.7}{\text{PERC}} \mathbf{B}$	1/4 = .25 5/16 = .31
	REFILL 25	<u>&amp;</u> -7/8	11/8	1.13	OS : 1:13 = OO C TIME DROP PERC	3/8 = .38 7/16 = .44
	REFILL				TIME DROP PERC	1/2 = .5
	REFILL				TIME DROP PERC	9/16 = .56 5/8 = .63
	REFILL				TIME DROP PERC (Decimal)	11/16 = .69 3/4 = .75
	REFILL				TIME DROP PERC (Decimal)	13/16 = .81
	REFILL				· DROP PERC (Decimal)	7/8 = .88 15/16 = .94
			Ten Percer	nt Calculation	*	
<b>A,B,C</b>				B,C,D		
-	of ABC Sma		ē		of BCD × 0.10 =	
C,D,E				D,E,F	of BCD  of DEF Smallest#of DEF	
_	of CDE Sma		ÞE	Smallest #	of DEF × 0.10 =	
E,F,G	of EFG Sma	llest#of EF		F,G,H	of FGH Smallest # of FGH	
Smallest	# of EFG × 0.	10 =	<del>_</del> .	Smallest #	of FGH × 0.10 =	

* If the top number in each set of boxes is larger than the bottom number, take another reading. If the top number is equal to or smaller than bottom number, average the 3 numbers for the perc rate.

/14
•
<b>:S</b>
_ inches
le bottom
<u></u>
am (pm),
conversions
1/16 = .06
1/8 = .13
3/16 = .19
1/4 = .25
5/16 = .31
3/8 = .38
7/16 =.44
1/2 = .5
9/16 = .56
5/8 = .63
11/16 = .69
3/4 = .75
13/16 = .81
7/8 = .88 ⁻
15/16 = .94
ing. If
rc rate.

,	mailed (	) i ) (4	10-10-15	PARCEL	
	Maule	$\mathcal{U}\mathcal{C}$	10 0 13	APP	SEPTIC
*********	*******		· <b></b>	YEAR	
Application Approved by:			Date;		
Amount Paid 1012/14	Receipt Number	11.550	Date:	rmit Number	<del></del>
NOTES:		10000	1- 11- 10	mili Number	<del></del>
_ call /h	agon Niemi	ewhe	n approved	234-80	276.
- I de la ma	01/11		7/		
	X105119	' 			
	**************************************	~********	·***************	******	******
Home Information	INSPECTION	ON REPO	K1		
Does the structure contain any of the fol	lowing elements?				
Garbage disposer Yes	Dis	hwasher	Yes No		
Grinder pumpYes	Lift	$\frac{1}{2}$ pump in $\frac{1}{2}$	Yes No	No	. •
Garbage disposer Yes Grinder pump Yes Effluent screen installed? Yes	No Eff	luent screen	manufacturer		
Alarm required? Yes No					
Alarm required? YesNo	Alarm Type/	ECTTI	Alarm manufac	cturer	
Lift pump in system?Yes	No Pump manuf	facturer	29		
_	_		- Tom		
Number of bedrooms 2 5/3	ed for 3				
	,		,		
Component Information	m + 500 lift		T. Clark		
Component Information  Tank size	Tank manufa	acturer			
Drainfield size 380 5%	, <del>[4</del> ,				
Drainfield medium	Madium mo	nufacturar	10 V 38'	mar	
Drainfield medium size/depth	IVICUIUIII IIIAI	nutacturer .	70 1 30	mound	
· · · · · · · · · · · · · · · · · · ·	****				
Soil Verification					
Vertical separation verified for	Boring #1 on	Dej	oth <u>+36</u>		
Martial garantian value 1 Co.	D 10	_			
Vertical separation verified for	Boring #2 on	De _l	oth		
Vertical separation verified for	Boring #3 on	De _l	oth		,
•					
Setback Verification				·	
	TANK	DRAI	NFIELD	•	
Distance to Well	+100	•	+100		
Distance to Building	+10	***************************************	+20		
Distance to Property Line Distance to OHWof Lake	+10		+10		
Distance to OHW of Lake Distance to Pressure Line	Company Compan		,		
Distance to Pressure Line  Distance to Wetland/Protected	Water + 10-0	***************************************	T100		
Distance to Wetland/Trotected	water <u>'75</u>		100'		•
. / ,	/	1		$\mathcal{A} \cap \mathcal{A}$	0/00
Date System Installed $\frac{10}{5}$	15 Installer M	aanun (	only Inspector _	fantt J	toll
<del>/-/-</del>		1	This pector of		· · · · · · · · · · · · · · · · · · ·
*******	******	****	******	*****	*****
***********	******	****	******	******	*****
			,		$\mathcal{A}^{\prime}$
	CERTIFICATE (	OF COMP	LIANCE		
( ) Certificate Is Hereby Denied	•		·		
(X) Certificate is Hereby Granted Base	ed upon the Application	addendum	from plane appoint	ions and all -4b	aumnortina deta
With property maintenance, this system	can be expected to function	n satisfacto	uoiii, piaiis, specillicat	ions and an other	supporting data.
Y.O.Chia		. ,		a guarantec.	//
fant to tall		175 12	spector	10,	15/15
Signature	Titl	le		Date	
(Certificate of Compliance is not valid u	nless signed by a Register	ed Qualified	d Employee)		
	•				

#### Becker County Planning & Zoning 835 Lake Ave, P O Box 787 Detroit Lakes, MN 56502-0787 Phone (218)-846-7314; Fax (218)-846-726

OCT 1 9 2006 Phone (218)-846-7314; Fax (218)-846-7266 Onsite Septic System Site Evaluation/Design (if parcel is a new split and a parcel number has not yet been issued, indicate the main parcel number from which the new parcel has been split from) Section 13 Township 139 Range 40 Township Name Erie Lake Classification Legal Description: SY2 of SE 14 Project Address: 34454 190th St Detroit Lakes, MN 56501 PROPERTY OWNER INFORMATION (as it appears on the tax statement, purchase agreement or deed). Owner's First Name Grant E: Brenda L. Owner's Last Name Graham Mailing Address 34454 190 th St. City, State, Zip Detroit Lakes MN 570501 Phone Number 847 - 1254 DESIGNER/INSTALLER INFORMATION Designer Name Dale J. Kenner Company Name D+B Septic+Landscape License # 2591

Address 3/664 St. Hwy 34 D. L. Phone Number 218-841-3781

218-841-3781 Installer Name OWNER Company Name Phone Number Address

4. SYSTEM DESIGN INFORMATION

Date of Site Evaluation 10/13/06

EXISTING SYSTEM STATUS - Check One

No existing system-new structure
Cesspool/Seepage
Failing (other than cesspool)
Undersized
Replacement or repair to existing

Design Flow 300 Gallons Per Day Number of Bedrooms 2
Garbage Disposal Yes X No Grinder Pump in House Yes No Lift station in House Yes No

What will new system serve? Check one

Dwelling
Resort/Commercial
Commercial (non resort)
Other – explain below

Well Depth 200
Depth of other wells within 100 ft of system

Depth to Restricting Layer

Maximum Depth of System

Original Soil Compacted Soil

Type of Soil Observation

Probe Boring

Depth to Restricting Layer

Maximum Depth of System

mail to brant braham when approved.

I mailed 10/20/04

in access Jea

gal H	eptic Tank ift Station olding Tank ther Tanks		Type of Drainfiel to be used Chamber H10 Drainfield J8* Ro Gravelless Experimen No Drainfi	EQ3 Rock ock Depth		Size of Lift Pu	n Imp ne	
Trence At-gray	ade ure Bed age Bed ad	<u>300</u>	sq ft sq ft sq ft sq ft		Distance to Well Distance to Build Distance to Propositance to OHW Distance to Press	ling // erty Line // / ure Line //	)	RAINFIELD 146 30 200 F 88 88
		Soil Sizing				other than .83, a		
Depth G-8"	Texture  top soil	Color loyr/2/	Structure	100 CO 10	Depth 50 - 71 "	Sand Joan	Color	Structure
8-24"	Sand	10yr 4/2			78-184"	20 40	3/3 10/2	
24-38"	11 60	10 yr 3/6						
38-50"	le u	10 yr 4/6						
I. ED Alu	e t. K	enner	certify that I ha	ive comple	ted the precedin	g design work		vith all
	me of Designer) equirements (incommon ance).		limited to Minnes	ota Chapte	r 7080 and the	Becker County	Individual Sev	vage Treatment
applicable re	quirements (inconance).		limited to Minnes	ota Chapte	r 7080 and the	Becker County  // Date	Individual Sev	vage Treatment
applicable re System Ordin	equirements (inconnance).  Designer  ***********************************	luding, but not	**************************************	ICE USE (	ONLY ****** D		15/06	vage Treatment
applicable re System Ordin  Signature of  ***********  Application A	equirements (inconnance).  Designer  ***********************************	luding, but not	*******FOR OFF	ICE USE (	ONLY ****** D		/s/ob	vage Treatment
applicable re System Ordin  Signature of  ***********  Application A	equirements (inconnance).  Designer  ***********************************	luding, but not	*******FOR OFF	ICE USE (	ONLY ****** D 7-343083 ******		/s/ob	vage Treatment
applicable re System Ordin  Signature of  **********  Application A Amount Paid  ***********  ( ) Certificat ( X ) Certificat	equirements (inchance).  als J.  Designer  **********  pproved by:  ************  te Is Hereby Delate is Hereby G	**************************************	Receipt Numbers Application be expected to func	TE OF CO	ONLY ******  7-343083  ********  MPLIANCE  um from, plans, actory, however	Date  ********  Permit  ********  specifications	Number  and all other s	**************************************
applicable re System Ordin  Signature of  **********  Application Ap Amount Paid  **********  ( ) Certificat  ( X ) Certificat  With property  Signature	dequirements (inchance).  Designer  *********  pproved by:  ********  te Is Hereby Denate is Hereby Gry maintenance, to the contact of the co	**********  ***********  nied ranted Based u	Receipt Numbers Application be expected to func	Der #895	ONLY *******  7-343083  **********  MPLIANCE  um from, plans, actory, however	Date  *******  Permit  *******  specifications  this is not a gr	**************************************	**************************************

ara D			
IELD			
*			
7			
•			
cture			
* *			
- 1			
<del></del>	•		
•			
reatment			
reatment			
**************************************			
**************************************			
**************************************			
reatment ******  ******  ting data.			
reatment ******  ******  ting data.			
reatment ******  ******  ting data.			
reatment  ******  ******  ting data.			
reatment  ******  ******  ting data.			
reatment  ******  ******  ting data.			
reatment  ******  ******  ting data.			
reatment  ******  ******  ting data.			
reatment  ******  ******  ting data.			



10 (1) 12 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (	
일 사용한다. 아스 시간 전기 전 유럽 (20) 교육 기간	
guet Keryulia in disebuah kecamatan disebuah kerualah berasakan disebuah berasakan disebuah berasakan disebuah Keryulian disebuah berasakan disebuah berasakan disebuah berasakan disebuah berasakan disebuah berasakan diseb Keryulian disebuah berasakan disebuah	
스캔 등에 있다. 현재 (1985년 - 1985년 -	
• •	